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Simulation of texture formation processes in carbonaceous
mesophase fibres
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Carbon fibres are spun from carbonaceous mesophases using standard melt spinning
techniques. These melt spun carbon fibres exhibit a set of distinct cross-sectional textures.
Two widely reported textures in literature are the planar radial (PR) and planar polar (PP).
This work uses a mesoscopic model, based on the classical Landau–de Gennes theory of
liquid crystals adapted to carbonaceous mesophases, to elucidate the principles that control
the texture formation processes. The model is able to capture the microstructure and the
formation of the PR and PP textures. A phase diagram for classical PR and PP textures has
been constructed in terms of temperature and fibre radius, thus establishing the processing
conditions and geometric factors that lead to the selection of these textures. The multi-
path formation process of the planar polar texture through defect splitting, direct planar
polar formation, and defect annihilation has been thoroughly characterized. The results of
this work provide new knowledge for optimization and control of mesophase carbon
fibre textures.

1. Introduction
Carbonaceous mesophases are precursors used in the
industrial manufacture of high performance carbon fibres.
The carbonaceous mesophase is a discotic nematic liquid
crystal which forms during the liquid phase pyrolysis of
many hydrocarbons, including such practical materials
as coal tar and petroleum pitch. The carbon fibres
manufactured from mesophase pitches are more com-
petitive than conventional fibres made from acrylic
precursors in several application areas [1, 2]. The
carbonaceous mesophase consists of disc-like molecules
that display a discotic nematic liquid crystal (DNLC)
phase. Figure 1 represents the molecular geometry,
positional disorder and orientational order present in
discotic nematic liquid crystals. The orientational order
is represented by a unit vector field that describes the
alignment of the anisotropic axis of the DNLC [3]. The
unit vector field is referred to as a director n (nΩn=1).
The director gives the average preferred orientation of Figure 1. Definition of the director orientation of uniaxial

discotic nematic liquid crystals (DNLCs). The director nthe unit normals u to the disc-like molecules as shown
is the average orientation of the unit normals to the disk-in figure 1.
like molecules in a discotic nematic phase.The microstructure or the texture in mesophase carbon

fibres is defined by the orientation distribution of the
a wide variety of transverse textures [4] such as radial,flat disc-like molecules. The conventional melt spinning
onion, mixed and oriented core, to name a few. Figure 2of the mesophase pitches produces micrometer-sized
shows the two most commonly observed cross-sectionalcylindrical filaments whose cross-sectional area displays
textures in mesophase carbon fibres, namely planar
radial (PR) and planar polar (PP) [2]. The lines in the*Author for correspondence;

e-mail: alejandro.rey@mcgill.ca fibre cross-section represent the loci of the side view
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378 D. Sharma and A. D. Rey

(1) To characterize, using well established theories and
computer simulation, the transient texture for-
mation of the characteristic textures namely, the
planar radial (PR) and planar polar (PP).

(2) To characterize the driving forces, namely the
long range energy (non-homogeneous) and the short
range energy (homogeneous) that promote the
selection of PR and PP texture.

(3) To study the transient processes involved in the
Figure 2. Schematic of the two characteristic cross-sectional

formation of planar polar (PP) texture.textures most commonly observed in mesophase carbon
fibres. (a) Planar radial (PR), (b) planar polar (PP). The

This paper is organized as follows. Section 2 presentsdashed lines indicate the disk trajectories, which are curves
locally orthogonal to the director. The dark dots show the theory and the Landau–de Gennes governing
the existence of defects. equations and a brief discussion of the numerical

methods. The numerical solutions to our model are
presented in § 3, which includes a discussion of the
transient evolution of the two characteristic PR and PPof the disc-like molecules. Although the two textures,
textures. Finally conclusions are presented.PR and PP, have been extensively investigated [4–7] a

clear understanding of the transient process of texture
evolution has been lacking. Transition among the two 2. Theory and governing equations
textures can be induced by changing the size of the fibre In this section we present the Landau–de Gennes theory
(geometric transition) or by changing the temperature of liquid crystals and the governing equations describing
(thermal transition). The aim of this paper is to investi- the mesophase fibre texture formation process.
gate this transient process and understand the selection
mechanisms that drive the texture formation process.

2.1. Definition of the tensor order parameter, directorComputer simulations of liquid crystalline materials
triad, and scalar order parameterscontinue to be performed using macroscopic, mesoscopic,

The microstructure of DNLCs is characterized by theand molecular models [7–9]. Macroscopic models based
above mentioned second order symmetric traceless tensor,on Frank free energy make use of the director equations
generally known as the tensor order parameterQ [11, 12].but are not ideal for simulating dynamic transient texture

formations starting from a random isotropic state sub-
sequently quenched into the nematic phase. In addition

Q=SAnn− 13 dB+P3 (mm− ll) (1)
to the orientation distribution of the two characteristic
textures (i.e. PR and PP), another distinguishing feature

where the following restrictions apply:is the presence of defects (disclinations) in the two
texture. Defects in nematic liquid crystals are character-
ized by strength (1, 1/2 …) and its sign (±). The strength Q=QT ; tr (Q)=0; −

1

2
∏S∏1; −

3

2
∏P∏

3

2of a disclination determines the amount of orientation
distortion and the sign corresponds to the direction of (2)
orientation rotation while circling the defect [10]. The
defects in mesophase fibres arise due to the constraints nΩn=mΩm= lΩ l=1; nn+mm+ ll=d. (3)
of tangential boundary conditions and a planar two-
dimensional (2D) orientation field. Planar radial texture The uniaxial director n corresponds to the maximum

eigenvalue l
n
=2S/3, the biaxial director m correspondshas one defect of strength s=+1 at the axis of the fibre

and the planar polar texture has two defects of s=+1/2 to the second largest eigenvalue l
m
=−(S−P)/3, and

the second biaxial director l (=n×m) corresponds to theas shown by thick dark dots in figure 2.
Mesoscopic models based on the second moment of smallest eigenvalue l

l
=−(S+P)/3. The orientation is

completely defined by the orthogonal director triadthe orientation distribution function, here denoted by the
symmetric traceless second order tensor Q, are well suited (n,m, l ). The magnitude of the uniaxial scalar order param-

eter S is a measure of the alignment along the uniaxialto capture the transient texture formation because defects
are non-singular solutions to the governing equations. director n and is given as S=3 (nΩQΩn)/2. Similarly the

biaxial scalar order parameter P, representing the degreeA very well established mesoscopic model is based on
the Landau–de Gennes free energy [6, 7] and is used in of alignment along the biaxial director m can be

expressed as P=3 (mΩQΩm−lΩQΩl )/2. On the principalthis paper. The objectives of this paper are:
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379T exture formation in mesophase fibres

axes, the tensor order parameter Q is represented as: Thermodynamic stability considerations impose the
following inequality:

L 1>0, 3L 1+5L 2>0. (10)

In addition, for discotic nematic liquid crystals L 2<0,C− 13 (S−P) 0 0

0 −
1

3
(S+P) 0

0 0
2

3
SD . (4) since twist distortions have the highest energy.

The governing equation describing the time evolution
of the tensor order parameter Q follows a gradient flow
model and is obtained by setting the variational derivative
of the free energy equal to the rotational torque [15]:

According to equation (4), the model is able to describe
biaxial (S≠0, P≠0), uniaxial (S≠0, P=0) and isotropic

−c(Q)
dQ

dt
=C dFdQD[S]=C q fqQ−VΩ q fqVQD[S] (11)(S=0, P=0) states.

where the superscript [S] indicates a symmetric and2.2. L andau–de Gennes mesoscopic model for liquid
traceless tensor, c(Q) is the rotational viscosity coefficient,crystalline materials
and dF/dQ is the functional derivative of the total freeThe Landau–de Gennes free energy density f of nematic
energy density. For the phenomenological coefficients A,liquid crystals (in the absence of surface terms and
B, and C in the short range energy, Doi and Edwardsexternal fields) is defined as the sum of the homogeneous
[16] proposed the following expressions:fh (short range) and Frank elastic fe ( long range)

contributions [12, 13]:

A=
ckT

2 A1−U3 B ; B=ckT U3 ; C=ckT U4 .f= fh+ fe (5)

(12 a, b, c)
fh=
1

2
A tr (Q2 )+

1

3
B tr (Q3 )+

1

4
C tr (Q2 )2 (6)

In the above expressions c is the number density of the
discs, k is the Boltzman constant, and U=3T */T is

fe=
1

2
L 1Qab,cQab,c+

1

2
L 2Qab,bQac,c the nematic potential, where T * is a reference tempera-

ture just below the isotropic–nematic phase transition.
Equation (11) represents three coupled non-linear+

1

2
L 3QabQcd,aQcd,b (7)

parabolic reaction–diffusion equations for the three
independent components of Q: Q

xx
, Q
yy
, Q
xy
. Thewhere A, B and C are phenomenological coefficients

director l is assumed to be along the fibre axis.(C must be positive in order for the homogeneous energy
Substituting equation (6) and (7) into equation (11)to have a minimum), and L 1 , L 2 and L 3 are Landau along with appropriate coefficients yields the followingcoefficients which in the uniaxial state are functions of
governing equations of Q(x, t) [16]:the three Frank elastic constants namely splay, twist,

and bend (K11 , K22 , K33 ), respectively. In the absence
of biaxiality (P=0) the relations between the Landau

dQ

dt
=−6DrGA1−U3 BQ−UCQΩQ− 13 (Q :Q)dDcoefficients and the Frank elastic constants are [14]:

+U(Q :Q)QH+6DrG L 1ckT V2Q+ L 2
2ckTL 1=

3K22−K11+K33
6S2

; L 2=
K11−K22
S2

and ×AV(VΩQ)+[V(VΩQ)]T− 23 tr[V(VΩQ)]dBH
L 3=

K33−K11
2S3

. (8 a, b, c) (13 a)

In the case of equal splay and bend as used in this paper Dr#Dr
1

[1− (3/2)Q :Q]2
; Dr=

ckT

6g
(13 b, c)

the relations become:

where Dr is the microstructure-dependent rotational
L 1=

K22
2S2
; L 1=

K−K22
S2

; K=K11=K33 . diffusivity, Dr is the pre-averaged rotational diffusivity
or isotropic diffusivity independent of the microstructure
and g is the viscosity of the material. The dimensionless(9 a, b)
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380 D. Sharma and A. D. Rey

form of our governing equations can be written as: implies that the system is above the isotropic–nematic
transition temperature and the isotropic phase is the
only stable phase. The initial condition can be writtenA1− 32Q :QB2dQdt as:

=−6GA1−U3 BQ−UCQΩQ− 13 (Q :Q)dD t=0, Qini=SiniAnininini− 13 dB
+U(Q :Q)QH+ 2L 1×UH2ckT * GṼ2Q+ L 22L 1 +

1

3
Pini (minimini− lini lini ) (16 a)

×AṼ(ṼΩQ)+[Ṽ(ṼΩQ)]T− 23 tr[Ṽ(ṼΩQ)]dBH
(14) nini=Acos (f)sin (f)

0
B mini=AcosAp2+fBsinAp2+fB

0
B lini=A001Bwhere quantities with superscript symbol (~) represents

their dimensionless form. The first term on the right
hand side of equation (14) represents the short range

(16 b)order energy contribution which governs the isotropic–
nematic phase transition. The second term is the long

where Sini and Pini are the initial uniaxial and biaxialrange energy contribution that imposes an energy penalty
order parameters, respectively, generated randomly and

for any spatial gradients (i.e. VQ≠0) present in the
Sini#0, Pini#0. The initial local orientation of thesystem. The dimensionless parameters that emerge from
system is given by generating a set of random orthogonal

the above equation are R=H2ckT */2L 1 U=3T */T unit vectors nini ,mini , lini . The initial condition representsand L̃ 2=L 2/L 1 . The dimensionless parameter R rep- an isotropic state (S=0, P=0) with thermal fluctuations
resents the ratio of short range order elasticity and

in order parameter (S, P) and orientation (n, m, l ). At
long range order elasticity [16], or equivalently the

the fibre boundary (r̃=1), Dirchlet boundary conditions
short range (internal ) time scale and long range

are imposed on Q, such that the state is uniaxial [S=
(external ) time scale. Moreover R(R&H2/j2 ) scales as

Seq , see equation (15)] and the director is along thethe square of the ratio of the fibre radius (macroscopic
radial direction.

length scale H or fibre radius in our case) to the
Equation (14) is a set of three coupled non-linear para-

molecular length scale (microscopic length scale j).
bolic (reaction-diffusion) partial differential equations

The molecular length scale is given as j= (L 1/ckT *)1/2. solved in a circle. The equations are solved using
When R∏1, long range energy dominates, spatial

Galerkin Finite Elements with Langrangean linear basis
gradients are costly, and homogeneous states are selected.

functions for spatial discretization, and a predictor-
On the other hand, when R&1, long range elasticity is

corrector time adaptive scheme for time integration.
insignificant with respect to short range order elasticity,

Convergence and mesh independence were established
and defects proliferate. In this work we show results for

in all cases using standard methods. As mentioned
0<R∏30. The nematic potential U defined above

above, the Landau–de Gennes model for nematic liquid
indicates, for a uniaxial state, the thermal effects on

crystals has an internal length scale L i and an externalthe scalar order parameter S. An expression relating the
length scale L e . The two length scales can be written as:nematic potential U to the scalar order parameter [15]

is given by L e=H (17 a)

L i=j=A L 1ckT *B1/2 (17 b)Seq=
1

4
+
3

4A1− 8

3UB1/2. (15)

The third dimensionless parameter is L̃ 2=L 2/L 1 , the where H is the fibre radius, and j is the correlation
length or the characteristic defect core size. The externalratio of the two elastic constants and is a measure of

the elastic anisotropy of the material. To satisfy the length scale governs the director orientation (n, m, l )
whereas the internal length scale governs the scalarthermodynamic restrictions of equation (10), a value of

L̃ 2=−0.5 is used throughout for our simulations. order parameter evolution (S, P). The model equations
contain an internal time scale ti and an external timeThe set of governing dimensionless equations (14) are

solved numerically on the unit circle. Initially ( t̃=0) the scale te . The internal time scale governs the fast evolution
of the scalar order parameters (S, P) and the externalsystem is isotropic, with Q#0 and U=Uiso<8/3. This
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381T exture formation in mesophase fibres

time scale controls the slow orientation evolution of the K33 as well as splay K11 modes of elastic deformation.
In addition the PP texture has a perfectly aligned regiondirectors (n, m, l ). The slow and fast time scales can be

expressed as: between the two defects close to the centre of the fibre.
The computed core structures for discotic nematic liquid
crystals are consistent with the core structures for rod-liketi=

g

ckT *
(18 a)

nematics [9]. Although not shown here, the defect core
structures for DNLC have a biaxial ring and its centre

te=
gH2
L 1
. (18 b) is uniaxial, in agreement with rod-like nematics [9].

Figure 4 shows the texture phase diagram that defines
The time adaptive integration scheme used for our the stability envelopes for the PR and PP textures as a
computation is able to take into account the intrinsic function of dimensionless fibre size H/j and dimensionless
stiffness of the system that arises from the disparity reciprocal temperature U. The curved solid line represents
(ti%te ) between the slow and fast time scales. the texture transition line. The phase diagram predicts

that carbon fibres of smaller cross-section favour the PR
3. Results and discussion texture whereas fibres of larger cross-section prefer the
3.1. Fibre textures PP texture. It also predicts that the region of stability

The two characteristic textures obtained by numerical for the PR texture increases with increase in temperature
solution to the governing equation are the planar radial (decrease in the nematic potential ) until U=3.0, after
(PR) and planar polar (PP) textures. To visualize the which the PR texture is stable for all fibre radii. Therefore
computed texture, we represent the tensor field Q by an if the carbon fibres are spun at higher temperature, they
ellipsoid whose principal axes are proportional to its should exhibit a PR texture irrespective of the fibre
eigenvalue, and represent directions perpendicular to radius. In constrast, if they are spun at lower temperature
directors n, m, l; these three directions represent the they should exhibit PP texture as well as PR texture
average molecular orientation of the disc-like molecules. depending upon the radius of the fibre. This is confirmed
Figure 3 shows visualizations of representative computed by experimental results [17]. In addition, the texture
textures, for U=6, L̃ 2=−0.5. The left figure shows the diagram is in agreement with the computations of Sonnet
PR texture for H/j=2.25. The molecules are aligned in et al. [6], for rod-like nematic fibres. At low H/j the
the radial direction (perpendicular) and a disclination of texture transition line is vertical, indicating that texture
strength s=+1 forms at the centre of the fibre cross- transformations are driven by size (geometric mode). At
section. The PR configuration is rotationally symmetric. highH/j the texture transition line is horizontal, indicating
The only deformation mode that exists in the PR texture that texture transformations are driven only by tempera-
is the bend mode K33 . The PP texture is shown on the ture (thermal mode). The existence of the geometric mode
right of figure 3, for H/j=5.0. The PP texture con- is due to the fact that when defect cores have the same
figuration contains two defects of strength s=+1/2
collinear with the fibre axis. The PP texture has bend

Figure 3. The two characteristic textures obtained as the
solution to the governing equation. The planar radial
(PR) with its characteristic disclination of strength +1 is
shown on the left; the planar polar (PP) texture with two

Figure 4. Phase diagram which predicts the type of solutiondisclinations of strength +1/2 is shown on the right. The
parametric conditions used are (i) for PR, U=6.0, for a given dimensionless temperature and dimensionless

radius. The two stable characteristic textures observed areL̃ 2=−0.5, H/j=2.25, (ii) for PP, U=6.0, L̃ 2=−0.5,
H/j=5.0. the planar radial (PR) and the planar polar (PP).
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382 D. Sharma and A. D. Rey

size as the fibre, then only one single defect can exist in

the fibre, and the texture is then PR. The existence of the

thermal mode indicates that the savings in long range

elasticity due to the aligned central layer of the PP

texture become insignificant at higher temperatures and

thus a PR chimney arises.

3.2. T exture formation processes
In this section we characterize the transient structural

processes and energetic changes that lead to the formation

of the PP and PR textures.

3.2.1. Planar radial texture formation
Figure 5 shows a set of time snapshots of the director

orientation n and the scalar order parameter S for four

increasing times, corresponding to the PR texture, for

U=6.0, L̃ 2=−0.5, and H/j=2.45. The scalar order
parameter is given by a grey-scale plot, with white

corresponding to S=0, the black to S=1. The evolution
of S shows that order diffuses inward, as in a diffusion

process. For H/j=2.45, the time scale for orientation t
n

is an order of magnitude smaller than the time scale tS
the scalar order parameter.

Figure 6 shows the total dimensionless long range F̃e
and the total dimensionless short range F̃h energies as
a function of dimensionless time t̃, corresponding to

the PR texture, for H/j=2.45, and U=6.0. The total
dimensionless long range order elastic energy F̃e and
short range energy F̃h are given by:

F̃h=P 2p
0
P 1
0
C12A1−U3 BQ :Q+ 13U{Q : (QΩQ)}

+
1

4
U{tr(Q :Q)2}D r̃dr̃dh (19)

Figure 5. Transient evolution of the PR texture. The parametric
conditions used here are U=6.0, H/j=2.45, L̃ 2=−0.5.
Left column: orientation; right column: scalar orderF̃e=P 2p

0
P 1
0
[(ṼQ) e (ṼQ)T+ L̃ 2 (ṼΩQ)Ω (ṼΩQ)] r̃dr̃dh. parameter.

(20)

by [18]:
Figure 6 shows that the relaxation time for the long range

elasticity is an order of magnitude smaller than that for
S(y−vt)=

Seq
2 G1−tanhCXSeq2 ( ỹ−vt̃)DH (21)

the short range elasticity, in agreement with the results

of figure 5. To explain why the director field relaxes

faster than the order parameter we must consider the v=4AU3 B1/2A jHBC− 14+ 34A9− 24UB1/2Dfront evolution process that replaces the isotropic state

with the nematic state. We shall perform the analysis (22)
assuming uniaxiality (P=0). The front propagation
solution for the scalar order parameter S in the uniaxial X=AU3 B1/2AHj B (23)
state and in a rectangular coordinate system is given
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383T exture formation in mesophase fibres

Figure 6. Time evolution of the long range energy and short range energy for U=6.0, H/j=2.45, L̃ 2=−0.5. The difference in
the two time scales is not clearly visible since both are of the same order of magnitude for the parametric values used. The
long range energy reaches a steady state at t̃#0.036 whereas the short range energy reaches a steady state at t̃#0.24.

where v is the dimensionless front speed, ỹ is the propa- three different multi-staged modes, according to the
magnitude of H/j, as follows.gation direction, and t̃ is the dimensionless time. From

this solution we estimate that the dimensionless time scale
tS for the propagation of the scalar order parameter is: 3.2.2.1. Defect nucleation–defect splitting–defect repulsion

mode
tS=

1

v
=

1

4AU3 B1/2A jHBC− 14+ 34A9− 24UB1/2D . When H/j<10, the computations show the evolution
from the initial isotropic state to the final PP state is
through the following processes:

(24) isotropic state�PR (I)�defect split (II)
�defect repulsion (III)�PP.For the values used in figure 6 (U=6, H/j=2.45) we

find that equation (24) yields tS=0.3, while the actual Figure 7 shows computed visualizations of the director
computed value is approximately tS=0.1. Figures 5 and orientation n ( left column) and the scalar order parameter
6 show that the director dynamics is faster than the scalar

S (right column), for U=6.0, L̃ 2=−0.5, H/j=3.16, andorder dynamics. This is a consequence of the fact that
four increasing dimensionless times. The figure shows

the scalar order parameter front penetrates an already
that this mode involves the formation of the intermediate

oriented layer that forms ahead of the front. If that were
PR texture and then a classical defect split of a defect of

not the case, the propagation would lead to defects and
strength (s)s=+1 into two defects of strength s=+1/2:

figure 6 shows that this is not the case. To compute the
dimensionless time scale for the propagation of orientation

s=+1� 2s=+
1

2
. (27)t

n
we assume that the layer thickness on which the director
is aligned is of the order of the scalar order parameter

Thus we call this process a defect nucleation-defectfront thickness df , which according to equation (21) is splitting-defect repulsion mode. The system takes thisgiven, in dimensionless form, by:
path when the parametric values used lie in the region
where PR texture is metastable as given in the phasedf=

2

XSeq
. (25)

diagram constructed by Davis [19]. The phase diagram
given in [19] gives, in addition to the stable texturesThen the dimensionless time scale t

n
for propagation of

shown in figure 3, textures that are metastable (steadyorientation becomes:
state solutions to our governing equation but with higher

t
n
=tS (1−df ). (26) energy). It is clearly visible in figure 7 that the system

attains a planar radial texture with a defect of strengthThe computational results shown in figure 6 ( left) show
of s=+1 at the centre and then it transforms into twothat t

n
#0.02, while if we use equation (26) we find that

defects of strength s=+1/2. This path for the evolutiont
n
#0.03.

of the PP texture is essentially a three-stage process.
The early stage involves the formation of the inter-3.2.2. Planar polar texture formation

Computational modelling reveals that the formation mediate PR texture, followed by an intermediate stage
in which the topological transformation of the s=+1process of the planar polar texture can occur through
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384 D. Sharma and A. D. Rey

The present formation process can be further under-
stood by looking at the evolution of the dimensionless
total short range order and dimensionless total long range
order energies, defined above; see equations (19, 20).
Figure 8 shows the total dimensionless long range order
elasticity and total dimensionless short range order elasti-
city as a function of dimensionless time, for H/j=3.16,
4.47, 10.0, and U=6.0. We observe that there are
essentially three stages (I, II, III) in the evolution of the
long range elasticity. The long range elasticity in stage I
of evolution reaches a minimum value. In stage II the
long range elasticity increases until it reaches an inter-
mediate plateau value. Finally in stage III there is further
increase or decrease in the long range elasticity. In the
early stage (i.e. at the bottom of the trough-like structure
in the plot of long range elasticity) the microstructure is
planar radial. In the intermediate stage the s=+1 defect
splits into two s=+1/2 defects. As mentioned above, in
the late stage the main phenomenon involved is the
relocation of two defects at their final equilibrium posi-
tion. In the time evolution of short range energy stage I
with an exponential decrease is followed by stage II with
a plateau, followed by a step-like decrease in stage III.
The step-like decrease following stage II signals the
beginning of the late stage. It is interesting to note that
the onset of the late stage for both short range energy
and long range energy evolution begins at almost the
same time. The splitting of the+1 defect in a PR texture
does not cause a change in the short range energy, and
therefore at the end of the intermediate stage in the

Figure 7. Transient evolution of the PP texture. The inter-
mediate PR texture is clearly visible before the texture
transforms into PP through defect splitting. The para-
metric conditions used here are U=6.0, H/j=3.16,
L̃ 2=−0.5. Left column: orientation; right column: scalar
order parameter.

defect into two defects of strength s=+1/2 occurs. The
late (final ) state is the separation of the two defects to
their final equilibrium position by defect repulsion
between the two equally charged s=+1/2 defects. The
final separation distance lf between the s=+1/2 pair in
the PP texture has been determined analytically and is

Figure 8. Long range and short range energy plots for
given by [20]:

different values of fibre radii H/j. The evolution of long
range and short range energies follows three different
stages (I, II, II). The dashed lines indicate the various

lf
2H
=
1

4√5
. (28)

stages which are not clearly visible in some cases.
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short range the texture is planar polar but the two+1/2
defects are very close to each other. In other words the
width of existence of stage II in the short range energy
plot is proportional to the extent that the PR texture is
metastable before it transforms to the PP texture. Thus
from the plots we observe that for the given value of
U=6.0, the PR texture ceases to be metastable for
H/j>10.0.
In partial summary, for the present mode we make
the following observations. First the system minimizes the
elastic energy by forming a planar radial texture. According
to the phase diagram (figure 4) the PR texture is stable
at U=6 for H/j<2.82, but for the current values of
H/j>2.82, it is not. This implies a stronger force pro-
moting uniaxiality that decreases the defect core radius
and results in a higher energy of deformation, as given
by the energy equation (29) for a defect of strength
s=+1 [21]:

W=Wc+pK lnAHrcB (29)

where Wc is the core energy and rc is the core radius.
This is the reason for the increase in long range energy
in the intermediate stage II. On the other hand the short
range energy decreases by decreasing the defect core size.
Therefore the system can reduce the total free energy
by shrinking the defect core radius only up to a limit;
beyond that the only way is by splitting the s=+1
defect into two s=+1/2 defects because the long range
energy scales with the square of the defect strength. After
the defect split there is a sudden drop in short range
free energy due to the relocation of the two s=+1/2
defects after the split.

3.2.2.2. Defect pair nucleation–defect repulsion mode
When 10<H/j<30, the computations show that the

evolution from the initial isotropic state to the final PP
state is through the following processes:

Figure 9. Second pathway for planar polar texture evolutionisotropic state�partial radial orientation (I)
without the formation and splitting of defect of strength�defect nucleation (II)�defect repulsion (III)�PP.
+1. The parametric conditions used are U=6.0, H/j=

Figure 9 shows orientation (left column) and order param- 14.15, L̃ 2=−0.5. Left column: orientation; right column:
scalar order parameter.eter (right column) for U=6.0, L̃ 2=−0.5, H/j=14.15,

for four increasing dimensionless times. Figure 10 shows
the total dimensionless long range free energy ( left) and isotropic core (IC), as shown in the top-most texture in

figure 9 at t̃=0.2953. The characteristic of the isotropictotal dimensionless short range free energy (right) as a
function of dimensionless time, for three increasing core texture is that there is a radial rim surrounding an

isotropic core. The scalar order parameter S in the corevalues of H/j, U=6.0, and L̃ 2=−0.5. For this pathway
the long range energy shows a three-stage process similar region is non-zero but is very small for the parameters

used in figure 9 (U=6.0, L̃ 2=−0.5, H/j=14.15). Onceto the previous mode. The minimum of the long range
energy (i.e. the lowest point of the trough-like shape in the long range energy has reached its minimum value

(end of I) the scalar order parameter is still diffusingthe long range energy plots in figure 10 at the end of
stage I) no longer corresponds to a PR orientation inwards, reducing the region of nucleation of the two

+1/2 defects and thereby leading to an increase in theconfiguration but has a texture that we will refer to as
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386 D. Sharma and A. D. Rey

Figure 10. Long range energy and short range energy plots
for different fibre radii H/j. The long range energy profile
shows three distinct stages, as for first pathway, but short
range energy does not show a step function-like drop and
has only two stages (I and II).

long range elasticity. At the beginning, the diffusion of
scalar order parameter, for this pathway to PP texture,
is radially symmetric until the long range elasticity
reaches its minimum value at the bottom of the trough.
After that event, the radial symmetry of the scalar order
parameter field is broken and there is anisotropic (non-
axisymmetric) diffusion of the short range elasticity, as
discussed below. The time scales for the orientation and
scalar order parameter processes shown in figure 10
can be understood with the scaling given in equations
(24, 26). For ts the computations give tS#1 and theory
gives tS=2.5. For tn the computations give tn#0.5 and
theory gives t

n
#2.23. Thus the theoretical scaling

provides an explanation for the parametric dependence
of the evolution.
Figure 11 shows two grey-scale visualizations of the
scalar order parameter for U=6.0, L̃ 2=−0.5, H/j=
14.15 ( left), H/j=17.32 (right), at the end of stage I.
The figures show anisotropic diffusion of the scalar order
parameter, with a finger-like front penetrating into the
isotropic core that cleaves it into two separate isotropic
‘daughter’ cores. Another interesting phenomenon to
note is that the time at which the long range energy
reaches its local maxima (end of II) for transition into
the third stage coincides with the short range energy

Figure 11. Time snap-shots exhibiting selective scalar orderreaching its steady state value. Finally the two s=+1/2
diffusion during the formation of planar polar texturedefects repel each other to an equilibrium position,
for H/j=20, U=6.0 and L̃ 2=−0.5. The scalar orderleading to a small decrease in the long range energy.
diffusion is anisotropic with a finger-like front moving

Figure 12 shows computer visualizations of the orienta- into the isotropic core region, giving two defect cores.
tion field (left) and scalar order parameter field (right) for
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387T exture formation in mesophase fibres

Figure 12. Demonstration that the distance of the nucleation
of the two +1/2 defects increases with increasing fibre
radius before they relocate to their equilibrium position.
The value of H/j is 14.15 for (a) and 20.0 for (b). The
value of U is 6.0 and L̃ 2=−0.5 for both cases.

U=6.0, L̃ 2=−0.5, and H/j=14.15 (a), H/j=17.32 (b).
The figure shows the nucleation distance of the s=+1/2
defect pair in the polar planar texture, before the repulsion
process is activated. The figure clearly shows that the
nucleation distance increases with increasing H/j, since
the cleavage of the isotropic core into two daughter
cores occurs on a larger core.
In partial summary, when H/j increases above a

threshold (H/j#10) the PR texture does not form but
a pair of s=+1/2 defects nucleates instead; due to
mutual repulsion the pair separates and eventully creates
the classical PP texture.

3.2.2.3. Defect nucleation–defect annihilation mode
Figure 13. The formation of the PP texture through initial

When H/j>30, the computations show the evolution coarsening of multiple defects and consequent annihilation
from the initial isotropic state to the final PP state is of two defects. The parametric values used in the above

case are U=6.0, H/j=31.6 and L 2=−0.5. The annihila-through the following processes:
tion of two 1/2 defects is clearly visible at t=5.419. Left:

isotropic state�defect nucleation (I) Ellipsoid representation. Right: Director representation.
The dark dots represent the location of various defects.�defect annihilation (II)�defect repulsion (III)�PP.

As we move towards higher fibre radii (H/j&30) for
the same value of U=6.0, there is an increase in the to the annihilation of two defects and eventually leaving
number of defects that form before the steady state polar two +1/2 defects. The defect annihilation reaction can
texture is observed. This is clearly depicted in figure 13 be given as:
showing the transient evolution of the planar polar
texture at U=6.0 and H/j=31.6. Initially four defects

s=+
1

2
+s=−

1

2
= 0. (30)

are formed, followed by defect–defect interaction leading
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388 D. Sharma and A. D. Rey

This defect–defect interaction occurs because defects of As indicated above, the time at which the long range
energy reaches its local maximum is the same time atopposite signs attract each other; the attractive force per

unit length between two wedge disclinations of 1/2 strength which the short range energy reaches its minimum steady
state value. After this point the reduction in energy ofis given by [11]:
the system is solely due to reduction in the long range
energy. The local maximum in the long range energy isF12=

pK

2d
(31)

followed by its steady decay indicating the movement of
the two 1/2 defects of opposite signs towards each otherwhere K represents the Frank elastic constant in the
( long range stage III). Finally there is a sudden reductioncase of one-constant approximation and d represents
in the long range energy (start of region IV), which isthe distance between the two disclinations. In addition the
an indication of the annihilation of two half defects,fibre size is not too large to render long range elastic
followed by a small steady decrease denoting reorientationeffects ( like the defect interaction) negligible, as the
and relocation of the two remaining s=+1/2 defects.attractive force reduces with the increase in distance
Moreover the long range energy reaches the steady statebetween the defects.
later than the short range energy because the long rangeFigure 14 shows the total dimensionless long range
order time scale (due to slow coarsening) is much largerenergy (left) and the total dimensionless short range energy
than the short range order time scale for the fibre radius(right) as a function of dimensionless time for U=6.0,
involved. The evolution is characterized by a rapidL̃ 2=−0.5, H/j=31.6. The long range energy has four decrease due to propagation of order (I), followed bystages (I, II, III, IV) while the short range energy has
the essentially fully relaxed stage (II). Analysis withtwo stages (I, II). The minimum of the long range energy
equations (24, 26) again correctly predicts the time scalescorresponds to the topmost set of figures in figure 13,
of region I in the two energies.and can be characterized by an ordered boundary

layer and isotropic central region (end of stage I for
long range energy). In addition the director profile at 4. Conclusions

A well established model based upon the classicalthis stage shows an apparent coarsening of multiple
defects at future time. As the scalar order parameter Landau–de Gennes theory for liquid crystals has been

used to model texture formation in mesophase carbondiffuses inward some of the apparent defects in the
director field become oriented and smooth out the sharp fibre. The model is able to predict the formation of

planar radial and planar polar textures. The parametricgradients. Eventually only four defects arise as the scalar
order parameter diffuses inwards leading to an increase conditions for their stability in terms of figure radius

and temperature have been computed and representedin the long range energy. The local maximum (end of
long range stage II) following the minimum in the long in the form of a phase diagram. Lower temperature and

thicker fibres tend to select the planar polar texturerange energy is characterized by four 1/2 defects (three
defects of +1/2 and one defect of −1/2). This point whereas thin fibres and higher temperatures tend to

promote the emergence of the planar radial texture. Thiscorresponds to t=0.93 in figure 14.

Figure 14. Time evolution of long range and short range energy for the formation of planar polar texture through defect
annihilation. The parametric values used are U=6.0, H/j=31.6 and L 2=−0.5. The long range energy exhibits an additional
stage IV. A sudden reduction is visible in the long range energy at t̃=5.61 where the two 1/2 defects combine to annhilate
each other and leave only two +1/2 defects indicating onset of stage IV.
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